NEHA December 2022 Journal of Environmental Health

December 2022 • our1al o) E18,ro1me1tal Healt+ 25 Helium-3 magnetic resonance. American Journal of Respiratory and Critical Care Medicine, 185(2), 186–191. rccm.201107-1348OC Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., & Gundersen, H.J. (2004). The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine, 169(1), 120–124. rccm.200308-1107OC O’Flaherty, E. J. (1998). A physiologically based kinetic model for lead in children and adults. Environmental Health Perspectives, 106(Suppl. 6), 1495–1503. ehp.98106s61495 Oomen, A.G., Rompelberg, C.J.M., Bruil, M.A., Dobbe, C.J.G., Pereboom, D.P.K.H., & Sips, A.J.A.M. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 0281–0287. s00244-002-1278-0 Pan, L., Sherry, B., Njai, R., & Blanck, H.M. (2012). Food insecurity is associated with obesity among U.S. adults in 12 states. Journal of the Academy of Nutrition and Dietetics, 112(9), 1403–1409. https:// Pell, M.B., & Schneyer, J. (2016, December 19). The thousands of U.S. locales where lead poisoning is worse than in Flint. Reuters. https:// Pell, M.B., & Schneyer, J. (2017, November 14). Reuters finds 3,810 U.S. areas with lead poisoning double Flint’s. Reuters. https://www. Pérez-Bravo, F., Ruz, M., Morán-Jiménez, M.J., Olivares, M., Rebolledo, A., Codoceo, J., Sepúlveda, V., Jenkin, A., Santos, J.L., & Fontanellas, A. (2004). Association between aminolevulinate dehydrase genotypes and blood lead levels in children from a lead-contaminated area in Antofagasta, Chile. Archives of Environmental Contamination and Toxicology, 47(2), 276–280. https://doi. org/10.1007/s00244-004-2215-1 Pounds, J.G., Long, G.J., & Rosen, J.F. (1991). Cellular and molecular toxicity of lead in bone. Environmental Health Perspectives, 91, 17–32. Rabinowitz, M.B., Kopple, J.D., & Wetherill, G.W. (1980). E¦ect of food intake and fasting on gastrointestinal lead absorption in humans. The American Journal of Clinical Nutrition, 33(8), 1784– 1788. Rabinowitz, M.B., Wetherill, G.W., & Kopple, J.D. (1973). Lead metabolism in the normal human: Stable isotope studies. Science, 182(4113), 725–727. 182.4113.725 Rădulescu, A., & Lundgren, S. (2019). A pharmacokinetic model of lead absorption and calcium competitive dynamics. Scientific Reports, 9(1), Article 14225. s41598-019-50654-7 Riedt, C.S., Buckley, B.T., Brolin, R.E., Ambia-Sobhan, H., Rhoads, G.G., & Shapses, S.A. (2009). Blood lead levels and bone turnover with weight reduction in women. Journal of Exposure Science & Environmental Epidemiology, 19(1), 90–96. https://doi. org/10.1038/jes.2008.5 Riordan, J.R., & Passow, H. (1971). E¦ects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochimica et Biophysica Acta, 249(2), 601–605. https://doi. org/10.1016/0005-2736(71)90139-8 Ruby, M.V., Davis, A., Kempton, J.H., Drexler, J.W., & Bergstrom, P.D. (1992). Lead bioavailability—Dissolution kinetics under simulated gastric conditions. Environmental Science & Technology, 26(6), 1242–1248. Saisa-ard, O., Somphon, W., Dungkaew, W., & Haller, K.J. (2014). Evidence of a lead metathesis product from calcium hydroxyapatite dissolution in lead nitrate solution. Advances in Materials Science and Engineering, 2014, Article 273632. https://doi. org/10.1155/2014/273632 Sakai, T., Yanagihara, S., Kunugi, Y., & Ushio, K. (1983). Mechanisms of ALA-D inhibition by lead and of its restoration by zinc and dithiothreitol. British Journal of Industrial Medicine, 40(1), 61–66. pdf/ Schell, L.M., Denham, M., Stark, A.D., Ravenscroft, J., Parsons, P., & Schulte, E. (2004). Relationship between blood lead concentration and dietary intakes of infants from 3 to 12 months of age. Environmental Research, 96(3), 264–273. envres.2004.02.008 Scinicariello, F., Murray, H.E., Mo¦ett, D.B., Abadin, H.G., Sexton, M. J., & Fowler, B.A. (2007). Lead and δ-aminolevulinic acid dehydratase polymorphism: Where does it lead? A meta-analysis. Environmental Health Perspectives, 115(1), 35–41. https://doi. org/10.1289/ehp.9448 Simons, T.J. (1986a). The role of anion transport in the passive movement of lead across the human red cell membrane. The Journal of Physiology, 378(1), 287–312. jphysiol.1986.sp016220 Simons, T.J. (1986b). Passive transport and binding of lead by human red blood cells. The Journal of Physiology, 378(1), 267– 286. Smith, D.R., Osterloh, J.D., & Flegal, A.R. (1996). Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environmental Health Perspectives, 104(1), 60–66. Sobin, C., Flores-Montoya, M.G., Gutierrez, M., Parisi, N., & Schaub, T. (2015). δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter 2*2 haplotype (hPEPT2*2) di¦erently influence neurobehavior in low-level lead exposed children. Neurotoxicology and Teratology, 47, 137–145. References continued on page 26