December 2022 • our1al o) E18,ro1me1tal Healt+ 25 Helium-3 magnetic resonance. American Journal of Respiratory and Critical Care Medicine, 185(2), 186–191. https://doi.org/10.1164/ rccm.201107-1348OC Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., & Gundersen, H.J. (2004). The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine, 169(1), 120–124. https://doi.org/10.1164/ rccm.200308-1107OC O’Flaherty, E. J. (1998). A physiologically based kinetic model for lead in children and adults. Environmental Health Perspectives, 106(Suppl. 6), 1495–1503. https://doi.org/10.1289/ ehp.98106s61495 Oomen, A.G., Rompelberg, C.J.M., Bruil, M.A., Dobbe, C.J.G., Pereboom, D.P.K.H., & Sips, A.J.A.M. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 0281–0287. https://doi.org/10.1007/ s00244-002-1278-0 Pan, L., Sherry, B., Njai, R., & Blanck, H.M. (2012). Food insecurity is associated with obesity among U.S. adults in 12 states. Journal of the Academy of Nutrition and Dietetics, 112(9), 1403–1409. https:// doi.org/10.1016/j.jand.2012.06.011 Pell, M.B., & Schneyer, J. (2016, December 19). The thousands of U.S. locales where lead poisoning is worse than in Flint. Reuters. https:// www.reuters.com/investigates/special-report/usa-lead-testing/ Pell, M.B., & Schneyer, J. (2017, November 14). Reuters finds 3,810 U.S. areas with lead poisoning double Flint’s. Reuters. https://www. reuters.com/article/us-usa-lead-map-idUSKBN1DE1H2 Pérez-Bravo, F., Ruz, M., Morán-Jiménez, M.J., Olivares, M., Rebolledo, A., Codoceo, J., Sepúlveda, V., Jenkin, A., Santos, J.L., & Fontanellas, A. (2004). Association between aminolevulinate dehydrase genotypes and blood lead levels in children from a lead-contaminated area in Antofagasta, Chile. Archives of Environmental Contamination and Toxicology, 47(2), 276–280. https://doi. org/10.1007/s00244-004-2215-1 Pounds, J.G., Long, G.J., & Rosen, J.F. (1991). Cellular and molecular toxicity of lead in bone. Environmental Health Perspectives, 91, 17–32. https://doi.org/10.1289/ehp.919117 Rabinowitz, M.B., Kopple, J.D., & Wetherill, G.W. (1980). E¦ect of food intake and fasting on gastrointestinal lead absorption in humans. The American Journal of Clinical Nutrition, 33(8), 1784– 1788. https://doi.org/10.1093/ajcn/33.8.1784 Rabinowitz, M.B., Wetherill, G.W., & Kopple, J.D. (1973). Lead metabolism in the normal human: Stable isotope studies. Science, 182(4113), 725–727. https://doi.org/10.1126/science. 182.4113.725 Rădulescu, A., & Lundgren, S. (2019). A pharmacokinetic model of lead absorption and calcium competitive dynamics. Scientific Reports, 9(1), Article 14225. https://doi.org/10.1038/ s41598-019-50654-7 Riedt, C.S., Buckley, B.T., Brolin, R.E., Ambia-Sobhan, H., Rhoads, G.G., & Shapses, S.A. (2009). Blood lead levels and bone turnover with weight reduction in women. Journal of Exposure Science & Environmental Epidemiology, 19(1), 90–96. https://doi. org/10.1038/jes.2008.5 Riordan, J.R., & Passow, H. (1971). E¦ects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochimica et Biophysica Acta, 249(2), 601–605. https://doi. org/10.1016/0005-2736(71)90139-8 Ruby, M.V., Davis, A., Kempton, J.H., Drexler, J.W., & Bergstrom, P.D. (1992). Lead bioavailability—Dissolution kinetics under simulated gastric conditions. Environmental Science & Technology, 26(6), 1242–1248. https://doi.org/10.1021/es50002a614 Saisa-ard, O., Somphon, W., Dungkaew, W., & Haller, K.J. (2014). Evidence of a lead metathesis product from calcium hydroxyapatite dissolution in lead nitrate solution. Advances in Materials Science and Engineering, 2014, Article 273632. https://doi. org/10.1155/2014/273632 Sakai, T., Yanagihara, S., Kunugi, Y., & Ushio, K. (1983). Mechanisms of ALA-D inhibition by lead and of its restoration by zinc and dithiothreitol. British Journal of Industrial Medicine, 40(1), 61–66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1009119/ pdf/ Schell, L.M., Denham, M., Stark, A.D., Ravenscroft, J., Parsons, P., & Schulte, E. (2004). Relationship between blood lead concentration and dietary intakes of infants from 3 to 12 months of age. Environmental Research, 96(3), 264–273. https://doi.org/10.1016/j. envres.2004.02.008 Scinicariello, F., Murray, H.E., Mo¦ett, D.B., Abadin, H.G., Sexton, M. J., & Fowler, B.A. (2007). Lead and δ-aminolevulinic acid dehydratase polymorphism: Where does it lead? A meta-analysis. Environmental Health Perspectives, 115(1), 35–41. https://doi. org/10.1289/ehp.9448 Simons, T.J. (1986a). The role of anion transport in the passive movement of lead across the human red cell membrane. The Journal of Physiology, 378(1), 287–312. https://doi.org/10.1113/ jphysiol.1986.sp016220 Simons, T.J. (1986b). Passive transport and binding of lead by human red blood cells. The Journal of Physiology, 378(1), 267– 286. https://doi.org/10.1113/jphysiol.1986.sp016219 Smith, D.R., Osterloh, J.D., & Flegal, A.R. (1996). Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environmental Health Perspectives, 104(1), 60–66. https://doi.org/10.1289/ehp.9610460 Sobin, C., Flores-Montoya, M.G., Gutierrez, M., Parisi, N., & Schaub, T. (2015). δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter 2*2 haplotype (hPEPT2*2) di¦erently influence neurobehavior in low-level lead exposed children. Neurotoxicology and Teratology, 47, 137–145. https://doi.org/10.1016/j.ntt.2014.12.001 References continued on page 26
RkJQdWJsaXNoZXIy NTU5MTM=