NEHA December 2022 Journal of Environmental Health

December 2022 • our1al o) E18,ro1me1tal Healt+ 15 Fiksdal, L., Maki, J.S., LaCroix, S.J., & Staley, J.T. (1985). Survival and detection of Bacteroides spp., prospective indicator bacteria. Applied and Environmental Microbiology, 49(1), 148–150. https:// doi.org/10.1128/aem.49.1.148-150.1985 González-Fernández, A., Symonds, E.M., Gallard-Gongora, J.F., Mull, B., Lukasik, J.O., Rivera Navarro, P., Badilla-Aguilar, A., Peraud, J., Brown, M.L., Mora Alvarado, D., Breitbart, M., Cairns, M.R., & Harwood, V.J. (2021). Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters. Water Research, 188, Article 116507. https://doi.org/10.1016/j.watres.2020.116507 Green, H.C., Dick, L.K., Gilpin, B., Samadpour, M., & Field, K.G. (2012). Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Applied and Environmental Microbiology, 78(2), 503–510. https://doi.org/10.1128/AEM.05734-11 Harwood, V.J., Staley, C., Badgley, B.D., Borges, K., & Korajkic, A. (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38(1), 1–40. https://doi.org/10.1111/1574-6976.12031 Haugland, R.A., Siefring, S.C., Wymer, L.J., Brenner, K.P., & Dufour, A.P. (2005). Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research, 39(4), 559–568. https://doi.org/10.1016/j.watres.2004.11.011 Haugland, R.A., Varma, M., Sivaganesan, M., Kelty, C., Peed, L., & Shanks, O.C. (2010). Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 33(6), 348–357. https://doi. org/10.1016/j.syapm.2010.06.001 Ishii, S., & Sadowsky, M.J. (2008). Escherichia coli in the environment: Implications for water quality and human health. Microbes and Environments, 23(2), 101–108. https://doi.org/10.1264/ jsme2.23.101 Kildare, B.J., Leutenegger, C.M., McSwain, B.S., Bambic, D.G., Rajal, V.B., & Wuertz, S. (2007). 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach. Water Research, 41(16), 3701– 3715. https://doi.org/10.1016/j.watres.2007.06.037 Korajkic, A., McMinn, B.R., & Harwood, V.J. (2018). Relationships between microbial indicators and pathogens in recreational water settings. International Journal of Environmental Research and Public Health, 15(12), Article 2842. https://doi.org/10.3390/ ijerph15122842 Korajkic, A., Wanjugi, P., Brooks, L., Cao, Y., & Harwood, V.J. (2019). Persistence and decay of fecal microbiota in aquatic habitats. Microbiology and Molecular Biology Reviews, 83(4), e0000519. https://doi.org/10.1128/MMBR.00005-19 Kreader, C.A. (1998). Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Applied and Environmental Microbiology, 64(10), 4103–4105. https://doi.org/10.1128/ AEM.64.10.4103-4105.1998 Mieszkin, S., Yala, J.-F., Joubrel, R., & Gourmelon, M. (2010). Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal e¥uents and assessment of ruminant faecal pollution by real-time PCR. Journal of AppliedMicrobiology, 108(3), 974–984. https://doi.org/10.1111/j.1365-2672.2009.04499.x National Environmental Methods Index. (n.d.). Standard methods: 9222D: Membrane filtration test for fecal coliforms. https://www. nemi.gov/methods/method_summary/5587/ Nayak, B., Weidhaas, J., & Harwood, V.J. (2015). LA35 poultry fecal marker persistence is correlated with that of indicators and pathogens in environmental waters. Applied and Environmental Microbiology, 81(14), 4616–4625. https://doi.org/10.1128/AEM.00444-15 Paruch, L., & Paruch, A.M. (2021). Cross-tracking of faecal pollution origins, macronutrients, pharmaceuticals and personal care products in rural and urban watercourses. Water Science & Technology, 83(3), 610–621. https://doi.org/10.2166/wst.2020.603 Pinckney, J.L., Paerl, H.W., Tester, P., & Richardson, T.L. (2001). The role of nutrient loading and eutrophication in estuarine ecology. Environmental Health Perspectives, 109(Suppl. 5), 699–706. https://doi.org/10.1289/ehp.01109s5699 Rabinovici, S.J.M., Bernknopf, R.L., Wein, A.M., Coursey, D.L., & Whitman, R.L. (2004). Economic and health risk trade-o§s of swim closures at a Lake Michigan beach. Environmental Science & Technology, 38(10), 2737–2745. https://doi.org/10.1021/ es034905z Save the Sound. (2022). Long Island Sound report card. https://www. savethesound.org/report-card Savichtcheva, O., Okayama, N., & Okabe, S. (2007). Relationships between Bacteroides 16S rRNA genetic markers and presence of bacterial enteric pathogens and conventional fecal indicators. Water Research, 41(16), 3615–3628. https://doi.org/10.1016/j. watres.2007.03.028 Schimmel, S.C., Benyi, S.J., & Strobel, C.J. (1999). An assessment of the ecological condition of Long Island Sound, 1990–1993. Environmental Monitoring and Assessment, 56(1), 27–49. https://doi. org/10.1023/A:1005967923353 Schriewer, A., Odagiri, M., Wuertz, S., Misra, P.R., Panigrahi, P., Clasen, T., & Jenkins, M.W. (2015). Human and animal fecal contamination of community water sources, stored drinking water and hands in rural India measured with validated microbial source tracking assays. The American Journal of Tropical Medicine and Hygiene, 93(3), 509–516. https://doi.org/10.4269/ajtmh.14-0824 Scott, T.M., Rose, J.B., Jenkins, T.M., Farrah, S.R., & Lukasik, J. (2002). Microbial source tracking: Current methodology and future directions. Applied and Environmental Microbiology, 68(12), 5796–5803. https://doi.org/10.1128/AEM.68.12.5796-5803.2002 References continued on page 16

RkJQdWJsaXNoZXIy NTU5MTM=